
Deep Generative Models

4. Maximum Likelihood Learning

•국가수리과학연구소 산업수학혁신센터 김민중

Deep Generative Models | mjgim@nims.re.kr | NIMS & AJOU University

Recap

• Representation: how do we model the joint distribution of many
random variables?
• Need compact representation

• Bayesian network: A probabilistic graphical model representing
variables and their conditional dependencies

• Autoregressive property(no conditional independence)

𝑝 𝒙 = 𝑝 𝑥! %
"#$

%

𝑝(𝑥"|𝒙&")

• For 𝑖 > 1,
𝑝'! 𝑥" 𝒙&" = 𝐵𝑒𝑟𝑛 𝑥"|𝑓" 𝒙&"

• where 𝜃" denotes the set of parameters used to specify the
mean function 𝑓": 0,1 "(! → (0,1)

Deep Generative Models | mjgim@nims.re.kr | NIMS & AJOU University

Taxonomy of Generative model approaches

Generative
model

Explicit density Approximate
density

Implicit density

Tractable
density

Variational
Autoencoder

Energy based
model

Diffusion model

Autoregressive
model

Normalizing
Flow

GAN

Deep Generative Models | mjgim@nims.re.kr | NIMS & AJOU University

Learning a generative model

• We are given a training dataset of examples.

• Generation: sample 𝒙)*+ should look like training set(sampling)
• Density estimation
• Unsupervised representation learning: learn what these images

have in common features
• 1st question: How to represent 𝑝'
• 2nd question: how to learn it

Model family

Deep Generative Models | mjgim@nims.re.kr | NIMS & AJOU University

Setting

• Let us assume that the domain is governed by some underlying
distribution 𝑝%,-,

• We are given a dataset 𝐷 of 𝑁 samples from 𝑝%,-,
• The standard assumption is that the data instances are

independent and identically distributed (IID)
• We are also given a family of models ℳ, and our task is to learn

some “good” distribution in this set:
• For example, ℳ could be all Bayes nets with a given graph

structure, for all possible choices of the CPD tables
• For example, a FVSBN for all possible choices of the logistic

regression parameters , 𝜃 = concatenation of all logistic
regression coefficients

Deep Generative Models | mjgim@nims.re.kr | NIMS & AJOU University

Goal of learning

• The goal of learning is to return a model 𝑝' that precisely
captures the distribution 𝑝%,-, from which our data was sampled

• This is in general not achievable because of
• limited data only provides a rough approximation of the true

underlying distribution
• computational reasons

• We want to select 𝑝' to construct the ”best” approximation to
the underlying distribution 𝑝%,-,

• What is ”best”?

Deep Generative Models | mjgim@nims.re.kr | NIMS & AJOU University

What is “best”?

• This depends on what we want to do
• Density estimation: we are interested in the full distribution

(so later we can compute whatever conditional probabilities
we want)

• Specific prediction tasks: we are using the distribution to
make a prediction
• Is this email spam or not?
• Structured prediction: Predict next frame in a video, or

caption given an image

Deep Generative Models | mjgim@nims.re.kr | NIMS & AJOU University

Model family

Learning as density estimation

• We want to learn the full distribution so that later we can answer
any probabilistic inference query

• In this setting, we can view the learning problem as density
estimation

• We want to construct 𝑝' as ”close” as possible to 𝑝%,-, (recall we
assume we are given a dataset 𝐷 of samples from 𝑝%,-,)

• How do we evaluate “closeness ”?

Deep Generative Models | mjgim@nims.re.kr | NIMS & AJOU University

KL-divergence

• How should we measure distance between distributions?
• The Kullback-Leibler divergence (KL-divergence) between two

distributions 𝑝 and 𝑞 is defined as

𝐷 𝑝 ∥ 𝑞 ≔ −=
𝒙

𝑝 𝒙 log
𝑞 𝒙
𝑝 𝒙

• 𝐷(𝑝 ∥ 𝑞) ≥ 0 for all 𝑝 and 𝑞, with equality if and only if 𝑝 = 𝑞.
• Prove it(exercise)

𝐸𝒙~0 − log
𝑞(𝒙)
𝑝(𝒙)

≥ − log 𝐸𝒙~0
𝑞 𝒙
𝑝 𝒙

= − log =
𝒙

𝑝 𝒙
𝑝 𝒙
𝑞 𝒙

= 0

• KL-divergence is asymmetric, i.e., 𝐷 𝑝 ∥ 𝑞 ≠ 𝐷 𝑞 ∥ 𝑝

Deep Generative Models | mjgim@nims.re.kr | NIMS & AJOU University

Learning as density estimation

• We want to learn the full distribution so that later we can answer
any probabilistic inference query

• In this setting, we can view the learning problem as density
estimation

• We want to construct 𝑝' as ”close” as possible to 𝑝%,-, (recall we
assume we are given a dataset 𝐷 of samples from 𝑝%,-,)

• How do we evaluate “closeness ”?
• KL-divergence is one possibility:

𝐷 𝑝%,-, ∥ 𝑝' = 𝐸𝒙~0"#$# log
𝑝%,-,(𝒙)
𝑝'(𝒙)

• 𝐷 𝑝%,-, ∥ 𝑝' = 0 iff two distributions are equal

Deep Generative Models | mjgim@nims.re.kr | NIMS & AJOU University

Expected log-likelihood

• We can simplify this somewhat:

𝐷 𝑝%,-, ∥ 𝑝' = 𝐸𝒙~0"#$# log
𝑝%,-,(𝒙)
𝑝'(𝒙)

= 𝐸𝒙~0"#$# log 𝑝%,-,(𝒙) − 𝐸𝒙~0"#$# log 𝑝'(𝒙)
• The first term does not depend on 𝑝'
• Then, minimizing KL divergence is equivalent to maximizing the

expected log-likelihood
argmin

0%
𝐷 𝑝%,-, ∥ 𝑝' = argmin

0%
−𝐸𝒙~0"#$# log 𝑝'(𝒙)

= argmax
0%

𝐸𝒙~0"#$# log 𝑝'(𝒙)

• Asks that 𝑝' assign high probability to instances sampled
from 𝑝%,-,, to reflect the true distribution

• Because of log, samples 𝒙 where 𝑝'(𝒙) ≈ 0 weigh heavily in
objective

Deep Generative Models | mjgim@nims.re.kr | NIMS & AJOU University

Maximum likelihood

• Approximate the expected log-likelihood
𝐸𝒙~0"#$# log 𝑝'(𝒙)

• with the empirical log-likelihood:

𝐸1 log 𝑝'(𝒙) =
1
|𝐷|=

𝒙∈1

log 𝑝' 𝒙

• Maximum likelihood learning is then:

argmax
0%

1
|𝐷|

=
𝒙∈1

log 𝑝' 𝒙

Deep Generative Models | mjgim@nims.re.kr | NIMS & AJOU University

Main idea in Monte Carlo Estimation

• Express the quantity of interest as the expected value of a
random variable

𝐸𝒙~0 𝑔(𝒙) = L𝑔 𝒙 𝑝 𝒙 𝑑𝒙 ==
𝒙

𝑔 𝒙 𝑝(𝒙)

• Generate 𝑁 samples 𝒙(!), 𝒙($), ⋯ , 𝒙(5) from the distribution 𝑝
with respect to which the expectation was taken

O𝑔 𝒙 ! , 𝒙 $, ⋯ , 𝒙 5 ≔
1
𝑁=
)#!

5

𝑔(𝒙()))

• where 𝒙(!), 𝒙($), ⋯ , 𝒙(5) are independent samples from 𝑝
• Note that O𝑔 is a random variable

Deep Generative Models | mjgim@nims.re.kr | NIMS & AJOU University

Properties of the Monte Carlo Estimate

• Unbiased
𝐸 O𝑔 = 𝐸𝒙~0 𝑔(𝒙)

• Convergence: By law of large numbers
O𝑔 = !

5
∑)#!5 𝑔(𝒙())) → 𝐸𝒙~0 𝑔(𝒙) for 𝑁 → ∞

• Variance

𝑉 O𝑔 = 𝑉
1
𝑁
=
)#!

5

𝑔(𝒙())) =
𝑉𝒙~0 𝑔(𝒙)

𝑁
• Thus, variance of the estimator can be reduced by increasing the

number of samples.

Deep Generative Models | mjgim@nims.re.kr | NIMS & AJOU University

Single variable example: A biased coin

• Two outcomes: heads (𝐻) and tails (𝑇)
• Data set: Tosses of the biased coin, e.g., 𝐷 = {𝐻,𝐻, 𝑇, 𝐻, 𝑇}
• Assumption: the process is controlled by a probability

distribution 𝑝%,-, 𝑥 where 𝑥 ∈ {𝐻, 𝑇}
• Class of models ℳ: all probability distributions over 𝑥 ∈ 𝐻, 𝑇
• Example learning task: How should we choose 𝑝' 𝑥 from ℳ if 3

out of 5 tosses are heads in 𝐷?

Deep Generative Models | mjgim@nims.re.kr | NIMS & AJOU University

MLE scoring for the coin example

• We represent our model: 𝑝' 𝑥 = 𝐻 = 𝜃 and 𝑝' 𝑥 = 𝑇 = 1 − 𝜃
• Observed data: 𝐷 = {𝐻,𝐻, 𝑇, 𝐻, 𝑇}
• Likelihood of data

%
"

𝑝' 𝑥(") = 𝜃 ⋅ 𝜃 ⋅ 1 − 𝜃 ⋅ 𝜃 ⋅ (1 − 𝜃)

• Optimize for 𝜃 which makes 𝐷 most likely
• What is the solution in this case? 𝜃 = 0.6, optimization problem

can be solved in closed-form

Deep Generative Models | mjgim@nims.re.kr | NIMS & AJOU University

Extending the MLE principle to autoregressive models

• Given an autoregressive model with 𝑑 variables and factorization

𝑝' 𝒙 = 𝑝'& 𝑥! %
"#$

%

𝑝'! 𝑥" 𝒙&"

• where 𝜃 = (𝜃!, ⋯ , 𝜃%) are the parameters of all the conditionals
• Training data 𝐷 = {𝒙 ! , ⋯ , 𝒙 5 }
• Maximum likelihood estimate of the parameters 𝜃?
• Decomposition of Likelihood function

𝐿 𝜃, 𝐷 =%
)#!

5

𝑝' 𝒙) =%
)#!

5

%
"#!

%

𝑝'! 𝑥"
) 𝒙&"

)

• Goal: argmax
'
𝐿 𝜃, 𝐷 = argmax

'
log 𝐿 𝜃, 𝐷

Deep Generative Models | mjgim@nims.re.kr | NIMS & AJOU University

MLE Learning: Gradient Descent

𝐿 𝜃, 𝐷 =%
)#!

5

𝑝' 𝒙) =%
)#!

5

%
"#!

%

𝑝'! 𝑥)
" 𝒙&"

)

• Goal: argmax
'
𝐿 𝜃, 𝐷 = argmax

'
log 𝐿 𝜃, 𝐷

• Let ℓ(𝜃) ≔ 𝐿 𝜃, 𝐷
• Initialize 𝜃6 = 𝜃!6, ⋯ , 𝜃%6 at random
• Compute ∇'ℓ(𝜃)(by back propagation)
• 𝜃-7! = 𝜃- − 𝛼-∇'ℓ(𝜃)

• Non-convex optimization problem, but often works well in
practice

Deep Generative Models | mjgim@nims.re.kr | NIMS & AJOU University

MLE Learning: Stochastic Gradient Descent

ℓ 𝜃 = log 𝐿 𝜃, 𝐷 =%
)#!

5

%
"#!

%

log 𝑝'! 𝑥"
) 𝒙&"

)

• ℓ 𝜃 = log 𝐿 𝜃, 𝐷
• Initialize 𝜃6 = 𝜃!6, ⋯ , 𝜃%6 at random
• Compute ∇'ℓ(𝜃)(by back propagation)
• 𝜃-7! = 𝜃- − 𝛼-∇'ℓ(𝜃)

• What is the gradient with respect to 𝜃8? (no parameter sharing)

∇''ℓ 𝜃 = =
)#!

5

∇''=
"#!

%

log 𝑝'! 𝑥"
) 𝒙&"

)

= =
)#!

5

∇'' log 𝑝'' 𝑥8
) 𝒙&8

)

Deep Generative Models | mjgim@nims.re.kr | NIMS & AJOU University

MLE Learning: Stochastic Gradient Descent

• Initialize 𝜃6 = 𝜃!6, ⋯ , 𝜃%6 at random
• Compute ∇'ℓ(𝜃)(by back propagation)
• 𝜃-7! = 𝜃- − 𝛼-∇'ℓ(𝜃)

∇'ℓ 𝜃 = =
)#!

5

=
"#!

%

∇' log 𝑝'! 𝑥"
) 𝒙&"

)

• What if 𝑁 = 𝐷 is huge?

∇'ℓ 𝜃 = 𝑁=
)#!

5
1
𝑁
=
"#!

%

∇' log 𝑝'! 𝑥"
) 𝒙&"

)

= 𝐸9 (~1 𝑁=
"#!

%

∇' log 𝑝'! 𝑥"
) 𝒙&"

)

• Monte Carlo: 𝑥) ~𝐷; ∇'ℓ 𝜃 ≈ 𝑁∑"#!% ∇' log 𝑝'! 𝑥"
) 𝒙&"

)

Deep Generative Models | mjgim@nims.re.kr | NIMS & AJOU University

Empirical Risk and Overfitting

• Empirical risk minimization can easily overfit the data
• Extreme example: The data is the model (remember all

training data)
• Generalization: the data is a sample, usually there is vast number

of samples that you have never seen
• Your model should generalize well to these “never-seen” samples
• Thus, we typically restrict the hypothesis space of distributions

that we search over

Deep Generative Models | mjgim@nims.re.kr | NIMS & AJOU University

How to avoid Overfitting?

• Hard constraints, e.g., by selecting a less expressive model family
• Smaller neural networks with less parameters
• Weight sharing

• Soft preference for “simpler” models: Occam Razor
• Augment the objective function with regularization

𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝒙,𝑀 = 𝑙𝑜𝑠𝑠 𝒙,𝑀 + 𝑅(𝑀)
• Evaluate generalization performance on a held-out validation set

Deep Generative Models | mjgim@nims.re.kr | NIMS & AJOU University

Recap

• For autoregressive models, it is easy to compute 𝑝' 𝒙
• When parameters are not shared, evaluate in parallel each

conditional log 𝑝'! 𝑥"
) 𝒙&"

)

• Natural to train them via maximum likelihood
• Higher log-likelihood doesn’t necessarily mean better looking

samples

Thanks

