Deep Generative Models

4. Maximum Likelihood Learning

• 국가수리과학연구소 산업수학혁신센터 김민중

Recap

- **Representation:** how do we model the joint distribution of many random variables?
 - Need compact representation
- **Bayesian network:** A probabilistic graphical model representing variables and their conditional dependencies
- Autoregressive property(no conditional independence)

$$p(\mathbf{x}) = p(x_1) \prod_{i=2}^{d} p(x_i | \mathbf{x}_{< i})$$

• For *i* > 1,

$$p_{\theta_i}(x_i | \boldsymbol{x}_{< i}) = Bern(x_i | f_i(\boldsymbol{x}_{< i}))$$

• where θ_i denotes the set of parameters used to specify the mean function $f_i: \{0,1\}^{i-1} \to (0,1)$

Taxonomy of Generative model approaches

Learning a generative model

• We are given a training dataset of examples.

 $\mathbf{x}_i \sim p_{data}$ i = 1, 2, ..., N

- Generation: sample x_{new} should look like training set(sampling)
- Density estimation
- Unsupervised representation learning: learn what these images have in common features
- 1st question: How to represent p_{θ}
- 2nd question: how to learn it

Setting

- Let us assume that the domain is governed by some underlying distribution p_{data}
- We are given a dataset D of N samples from p_{data}
- The standard assumption is that the data instances are independent and identically distributed (IID)
- We are also given a family of models \mathcal{M} , and our task is to learn some "good" distribution in this set:
 - For example, ${\mathcal M}$ could be all Bayes nets with a given graph structure, for all possible choices of the CPD tables
 - For example, a FVSBN for all possible choices of the logistic regression parameters , θ = concatenation of all logistic regression coefficients

Goal of learning

- The goal of learning is to return a model p_{θ} that precisely captures the distribution p_{data} from which our data was sampled
- This is in general not achievable because of
 - limited data only provides a rough approximation of the true underlying distribution
 - computational reasons
- We want to select p_{θ} to construct the "best" approximation to the underlying distribution p_{data}
- What is "best"?

What is "best"?

- This depends on what we want to do
 - Density estimation: we are interested in the full distribution (so later we can compute whatever conditional probabilities we want)
 - Specific prediction tasks: we are using the distribution to make a prediction
 - Is this email spam or not?
 - Structured prediction: Predict next frame in a video, or caption given an image

Learning as density estimation

- We want to learn the full distribution so that later we can answer any probabilistic inference query
- In this setting, we can view the learning problem as density estimation
- We want to construct p_{θ} as "close" as possible to p_{data} (recall we assume we are given a dataset *D* of samples from p_{data})

 $\mathbf{x}_i \sim p_{data}$ $i = 1, 2, \dots, N$

• How do we evaluate "closeness "?

KL-divergence

- How should we measure distance between distributions?
- The Kullback-Leibler divergence (KL-divergence) between two distributions *p* and *q* is defined as

$$D(p \parallel q) \coloneqq -\sum_{x} p(x) \log \frac{q(x)}{p(x)}$$

- $D(p \parallel q) \ge 0$ for all p and q, with equality if and only if p = q.
 - Prove it(exercise)

$$E_{\boldsymbol{x}\sim p}\left[-\log\frac{q(\boldsymbol{x})}{p(\boldsymbol{x})}\right] \ge -\log\left(E_{\boldsymbol{x}\sim p}\left[\frac{q(\boldsymbol{x})}{p(\boldsymbol{x})}\right]\right)$$
$$= -\log\left(\sum_{\boldsymbol{x}} p(\boldsymbol{x})\frac{p(\boldsymbol{x})}{q(\boldsymbol{x})}\right) = 0$$

• KL-divergence is asymmetric, i.e., $D(p \parallel q) \neq D(q \parallel p)$

Learning as density estimation

- We want to learn the full distribution so that later we can answer any probabilistic inference query
- In this setting, we can view the learning problem as density estimation
- We want to construct p_{θ} as "close" as possible to p_{data} (recall we assume we are given a dataset *D* of samples from p_{data})
- How do we evaluate "closeness "?
- KL-divergence is one possibility:

$$D(p_{data} \parallel p_{\theta}) = E_{\boldsymbol{x} \sim p_{data}} \left[\log \frac{p_{data}(\boldsymbol{x})}{p_{\theta}(\boldsymbol{x})} \right]$$

• $D(p_{data} \parallel p_{\theta}) = 0$ iff two distributions are equal

Expected log-likelihood

• We can simplify this somewhat:

$$D(p_{data} \parallel p_{\theta}) = E_{\boldsymbol{x} \sim p_{data}} \left[\log \frac{p_{data}(\boldsymbol{x})}{p_{\theta}(\boldsymbol{x})} \right]$$

 $= E_{\boldsymbol{x} \sim p_{data}}[\log p_{data}(\boldsymbol{x})] - E_{\boldsymbol{x} \sim p_{data}}[\log p_{\theta}(\boldsymbol{x})]$

- The first term does not depend on p_{θ}
- Then, minimizing KL divergence is equivalent to maximizing the expected log-likelihood

$$\arg\min_{p_{\theta}} D(p_{data} \parallel p_{\theta}) = \arg\min_{p_{\theta}} -E_{\boldsymbol{x} \sim p_{data}} [\log p_{\theta}(\boldsymbol{x})]$$
$$= \arg\max_{p_{\theta}} E_{\boldsymbol{x} \sim p_{data}} [\log p_{\theta}(\boldsymbol{x})]$$

- Asks that p_{θ} assign high probability to instances sampled from p_{data} , to reflect the true distribution
- Because of log, samples \mathbf{x} where $p_{\theta}(\mathbf{x}) \approx 0$ weigh heavily in objective

Maximum likelihood

• Approximate the expected log-likelihood

$$E_D[\log p_{\theta}(\boldsymbol{x})] = \frac{1}{|D|} \sum_{\boldsymbol{x} \in D} \log p_{\theta}(\boldsymbol{x})$$

• Maximum likelihood learning is then:

$$\arg \max_{p_{\theta}} \frac{1}{|D|} \sum_{\boldsymbol{x} \in D} \log p_{\theta}(\boldsymbol{x})$$

Main idea in Monte Carlo Estimation

• Express the quantity of interest as the expected value of a random variable

$$E_{\boldsymbol{x}\sim p}[g(\boldsymbol{x})] = \int g(\boldsymbol{x})p(\boldsymbol{x})d\boldsymbol{x} = \sum_{\boldsymbol{x}} g(\boldsymbol{x})p(\boldsymbol{x})$$

• Generate N samples $x^{(1)}, x^{(2)}, \cdots, x^{(N)}$ from the distribution p with respect to which the expectation was taken

$$\widehat{g}(\boldsymbol{x}^{(1)}, \boldsymbol{x}^{(2)}, \cdots, \boldsymbol{x}^{(N)}) \coloneqq \frac{1}{N} \sum_{n=1}^{N} g(\boldsymbol{x}^{(n)})$$

- where $x^{(1)}, x^{(2)}, \dots, x^{(N)}$ are independent samples from p
- Note that \hat{g} is a random variable

Properties of the Monte Carlo Estimate

• Unbiased

$$E[\hat{g}] = E_{\boldsymbol{x} \sim p}[g(\boldsymbol{x})]$$

• Convergence: By law of large numbers

$$\hat{g} = \frac{1}{N} \sum_{n=1}^{N} g(\boldsymbol{x}^{(n)}) \to E_{\boldsymbol{x} \sim p}[g(\boldsymbol{x})] \text{ for } N \to \infty$$

• Variance

$$V[\hat{g}] = V\left[\frac{1}{N}\sum_{n=1}^{N}g(\boldsymbol{x}^{(n)})\right] = \frac{V_{\boldsymbol{x}\sim p}[g(\boldsymbol{x})]}{N}$$

• Thus, variance of the estimator can be reduced by increasing the number of samples.

Single variable example: A biased coin

- Two outcomes: heads (*H*) and tails (*T*)
- Data set: Tosses of the biased coin, e.g., $D = \{H, H, T, H, T\}$
- Assumption: the process is controlled by a probability distribution $p_{data}(x)$ where $x \in \{H, T\}$
- Class of models \mathcal{M} : all probability distributions over $x \in \{H, T\}$
- Example learning task: How should we choose $p_{\theta}(x)$ from \mathcal{M} if 3 out of 5 tosses are heads in D?

MLE scoring for the coin example

- We represent our model: $p_{\theta}(x = H) = \theta$ and $p_{\theta}(x = T) = 1 \theta$
- Observed data: $D = \{H, H, T, H, T\}$
- Likelihood of data

- Optimize for θ which makes D most likely
- What is the solution in this case? $\theta = 0.6$, optimization problem can be solved in closed-form

Extending the MLE principle to autoregressive models

• Given an autoregressive model with *d* variables and factorization

$$p_{\theta}(\boldsymbol{x}) = p_{\theta_1}(x_1) \prod_{i=2}^{d} p_{\theta_i}(x_i | \boldsymbol{x}_{< i})$$

- where $\theta = (\theta_1, \dots, \theta_d)$ are the parameters of all the conditionals
- Training data $D = \{x^{(1)}, \cdots, x^{(N)}\}$
- Maximum likelihood estimate of the parameters θ ?
 - Decomposition of Likelihood function

$$L(\theta, D) = \prod_{n=1}^{N} p_{\theta}(\boldsymbol{x}^{(n)}) = \prod_{n=1}^{N} \prod_{i=1}^{d} p_{\theta_{i}}(\boldsymbol{x}_{i}^{(n)} | \boldsymbol{x}_{
Goal: $\arg \max_{\theta} L(\theta, D) = \arg \max_{\theta} \log L(\theta, D)$$$

MLE Learning: Gradient Descent

$$L(\theta, D) = \prod_{n=1}^{N} p_{\theta}(\mathbf{x}^{(n)}) = \prod_{n=1}^{N} \prod_{i=1}^{d} p_{\theta_{i}}(x^{(n)}_{i} | \mathbf{x}_{$$

- Goal: $\arg \max_{\theta} L(\theta, D) = \arg \max_{\theta} \log L(\theta, D)$
- Let $\ell(\theta) \coloneqq L(\theta, D)$
 - Initialize $\theta^0 = (\theta_1^0, \cdots, \theta_d^0)$ at random
 - Compute $\nabla_{\theta} \ell(\theta)$ (by back propagation)

•
$$\theta^{t+1} = \theta^t - \alpha_t \nabla_\theta \ell(\theta)$$

 Non-convex optimization problem, but often works well in practice

MLE Learning: Stochastic Gradient Descent

$$\ell(\theta) = \log L(\theta, D) = \prod_{n=1}^{N} \prod_{i=1}^{d} \log p_{\theta_i} \left(x_i^{(n)} \middle| \mathbf{x}_{< i}^{(n)} \right)$$

- $\ell(\theta) = \log L(\theta, D)$
 - Initialize $\theta^0 = (\theta_1^0, \cdots, \theta_d^0)$ at random
 - Compute $\nabla_{\theta} \ell(\theta)$ (by back propagation)
 - $\theta^{t+1} = \theta^t \alpha_t \nabla_{\theta} \ell(\theta)$
- What is the gradient with respect to θ_k ? (no parameter sharing)

$$\nabla_{\theta_k} \ell(\theta) = \sum_{n=1}^N \nabla_{\theta_k} \sum_{i=1}^d \log p_{\theta_i} \left(x_i^{(n)} \big| \mathbf{x}_{
$$= \sum_{n=1}^N \nabla_{\theta_k} \log p_{\theta_k} \left(x_k^{(n)} \big| \mathbf{x}_{$$$$

MLE Learning: Stochastic Gradient Descent

- Initialize $\theta^0 = (\theta_1^0, \cdots, \theta_d^0)$ at random
- Compute $\nabla_{\theta} \ell(\theta)$ (by back propagation)
- $\theta^{t+1} = \theta^t \alpha_t \nabla_{\theta} \ell(\theta)$

$$\nabla_{\theta} \ell(\theta) = \sum_{n=1}^{N} \sum_{i=1}^{d} \nabla_{\theta} \log p_{\theta_i} \left(x_i^{(n)} \middle| \mathbf{x}_{$$

• What if N = |D| is huge?

$$\nabla_{\theta} \ell(\theta) = N \sum_{n=1}^{N} \frac{1}{N} \sum_{i=1}^{d} \nabla_{\theta} \log p_{\theta_{i}} \left(x_{i}^{(n)} \big| \mathbf{x}_{
$$= E_{\mathbf{x}^{(n)} \sim D} \left[N \sum_{i=1}^{d} \nabla_{\theta} \log p_{\theta_{i}} \left(x_{i}^{(n)} \big| \mathbf{x}_{$$$$

• Monte Carlo: $x^{(n)} \sim D$; $\nabla_{\theta} \ell(\theta) \approx N \sum_{i=1}^{d} \nabla_{\theta} \log p_{\theta_i} \left(x_i^{(n)} \middle| \mathbf{x}_{< i}^{(n)} \right)$

Empirical Risk and Overfitting

- Empirical risk minimization can easily overfit the data
 - Extreme example: The data is the model (remember all training data)
- Generalization: the data is a sample, usually there is vast number of samples that you have never seen
- Your model should generalize well to these "never-seen" samples
- Thus, we typically restrict the hypothesis space of distributions that we search over

How to avoid Overfitting?

- Hard constraints, e.g., by selecting a less expressive model family
 - Smaller neural networks with less parameters
 - Weight sharing
- Soft preference for "simpler" models: Occam Razor
- Augment the objective function with regularization $objective(\mathbf{x}, M) = loss(\mathbf{x}, M) + R(M)$
- Evaluate generalization performance on a held-out validation set

Recap

- For autoregressive models, it is easy to compute $p_{\theta}(x)$
 - When parameters are not shared, evaluate in parallel each conditional $\log p_{\theta_i} \left(x_i^{(n)} \middle| \mathbf{x}_{< i}^{(n)} \right)$
- Natural to train them via maximum likelihood
- Higher log-likelihood doesn't necessarily mean better looking samples

Thanks