Deep Generative Models

4. Maximum Likelihood Learning




Recap

Representation: how do we model the joint distribution of many
random variables?

« Need compact representation

Bayesian network: A probabilistic graphical model representing
variables and their conditional dependencies
Autoregressive property(no conditional independence)

d
p() =p() | [pCrilxa)
(=2

Fori > 1,

po, (xi1x<;) = Bern(x;|f;(x<;))
where 6; denotes the set of parameters used to specify the
mean function £;:{0,1}}"1 - (0,1)
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Taxonomy of Generative model approaches
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Learning a generative model

« We are given a training dataset of examples.

d(pdatcw pe) Po
Pdata

0 M
Model family

i=1,2,....N
« Generation: sample x,,,,, should look like training set(sampling)
 Density estimation
e Unsupervised representation learning: learn what these images
have in common features
* 15t question: How to represent pg
« 2nd question: how to learn it
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Setting

Let us assume that the domain is governed by some underlying
distribution pg,¢4
We are given a dataset D of N samples from p,:¢q4
The standard assumption is that the data instances are
independent and identically distributed (l1ID)
We are also given a family of models M, and our task is to learn
some “good” distribution in this set:
 For example, M could be all Bayes nets with a given graph
structure, for all possible choices of the CPD tables
 For example, a FVSBN for all possible choices of the logistic
regression parameters, @ = concatenation of all logistic
regression coefficients
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Goal of learning

e The goal of learning is to return a model py that precisely
captures the distribution p,,:, from which our data was sampled
e This is in general not achievable because of
 |limited data only provides a rough approximation of the true
underlying distribution
e computational reasons
« We want to select py to construct the "best” approximation to
the underlying distribution p44¢4
« What is "best”?
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What is “best”?

e This depends on what we want to do
e Density estimation: we are interested in the full distribution

(so later we can compute whatever conditional probabilities

we want)
e Specific prediction tasks: we are using the distribution to

make a prediction
e |s this email spam or not?
e Structured prediction: Predict next frame in a video, or

caption given an image
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Learning as density estimation

« We want to learn the full distribution so that later we can answer
any probabilistic inference query

« |n this setting, we can view the learning problem as density
estimation

« We want to construct pg as “close” as possible to p,,;, (recall we
assume we are given a dataset D of samples from pg,¢4)

d(pdatcn p@) Po
Pdata

0 M
Model family

i=1,2,...N
« How do we evaluate “closeness ”?
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KL-divergence

How should we measure distance between distributions?
The Kullback-Leibler divergence (KL-divergence) between two
distributions p and q is defined as

D(pllq):=— z p(x) 10gq(x)

X
D(p Il g) = 0 for all p and g, with equality if and only if p = g.
 Prove it(exercise)

)] q(x)
Exp [—l 0g —— (x) —log (Ex~p [@D

B p(x)
= —log (Z p(x) q(x)>

KL-divergence is asymmetric, i.e., D(p Il ¢) # D(q |l p)
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Learning as density estimation

« We want to learn the full distribution so that later we can answer
any probabilistic inference query

« |n this setting, we can view the learning problem as density
estimation

« We want to construct pg as “close” as possible to p,,;, (recall we
assume we are given a dataset D of samples from pg,¢4)

« How do we evaluate “closeness ”?

e KL-divergence is one possibility:

pdata(x)
D(Paata Il Pg) = Ex~pdam llog 1g (%)

* D(pgata | o) = 0 iff two distributions are equal
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Expected log-likelihood

 We can simplify this somewhat:
Pdata(X)

Pe(X)

= Ex-pgara 108 Paata(X)] — Ex~p,,, 1108 Po (X)]
« The first term does not depend on pg

 Then, minimizing KL divergence is equivalent to maximizing the
expected log-likelihood

argmin D (Paata | Pg) = arg Min =Ex~pgata [log pg (x)]
= argmax Expyaa 108D (X)]

 Asks that pg assign high probability to instances sampled
from pg,tq, tO reflect the true distribution

« Because of log, samples x where pg(x) = 0 weigh heavily in
objective

D(Paata Il Pg) = Expgnta llog
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Maximum likelihood

e Approximate the expected log-likelihood

Ex-p,,..1l0gpe(x)]
e with the empirical Iog—likelihood'

Epllog g ()] = - ) logpa(x)

xX€eD

« Maximum likelihood Iearning is then:

arg max Z log pg(x)
ID|
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Main idea in Monte Carlo Estimation

Express the quantity of interest as the expected value of a
random variable

Feplg@)] = [ gGOp(Idx = " gGp()

Generate N samples x(D, x(2) ... x(N) from the distribution p
with respect to which the expectation was taken

N
G(x®, x@ .. x W)Y = %z (™)
n=1

where x(, x@ ... xM are independent samples from p
Note that g is a random variable
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Properties of the Monte Carlo Estimate

Unbiased

Elg] = Ex-plg(x)]
Convergence' By law of large numbers

= —3N_; g(x™) > Ey_,[g(x)] for N — oo

Z g(x™)| =

Thus, variance of the estlmator can be reduced by increasing the
number of samples.

Variance

Vi~p [g (x)]
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Single variable example: A biased coin

« Two outcomes: heads (H) and tails (T)

 Data set: Tosses of the biased coin, e.g, D = {H,H,T,H, T}

« Assumption: the process is controlled by a probability
distribution pg,¢q(x) Where x € {H, T}

 Class of models M : all probability distributions over x € {H, T}

« Example learning task: How should we choose pg(x) from M if 3
out of 5 tosses are heads in D?
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MLE scoring for the coin example

« We represent our model: pg(x =H) =0 andpyg(x =T)=1-0
« Observeddata: D ={H,H,T,H, T}
 Likelihood of data

Hpg(x(i))=9-9-(1—9)-9-(1—9)

L(6:D)

0 OI.2 014 0 016 018 1
e Optimize for 8 which makes D most likely

« What is the solution in this case? & = 0.6, optimization problem
can be solved in closed-form
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Extending the MLE principle to autoregressive models

Given an autoregressive model With d variables and factorization

pe(x) = pg, (x1) 1_[299 (xilx<i)

where 8 = (04,:+-,0,) are the parameters of all the conditionals
Training data D = {x(, ..., x(")}
Maximum likelihood estimate of the parameters 67

o Decomposition of Likelihood function
N d

00 Tte) = [ T[ 1)

n=1 i=1
« Goal: argmaxL(Q D) = argmaxlogL(Q D)
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MLE Learning: Gradient Descent

N d

L(6, D) —ﬂpe(x(")) | ] [Po(

n=1 i=1
e Goal: argmaxL(Q D) = argmaxlogL(Q D)
e Let £(0) = L(H D)
- Initialize 8° = (67, --,03) at random
« Compute Vy£(0)(by back propagation)
e Ot =0t — q,Vyt(0)
« Non-convex optimization problem, but often works well in
practice

n
X<i
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MLE Learning: Stochastic Gradient Descent

N d
£(0) =logL(8,D) = l ll llogpgi (xi(n)‘xg?)
n=1 i=1

« £(0) =logL(6,D)
- Initialize 9% = (67, --+,03) at random
« Compute V,£(6)(by back propagation)
e Ot =0t — q,Vyt(0)
« What is the gradient with respect to 8,7 (no parameter sharing)

N d
ngf(g) — Z ng z logpg ( )‘x(n))
n=1 =1
N
— z Vo, lngg )‘x(n))
n=1
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MLE Learning: Stochastic Gradient Descent

Initialize 9° = (62, --,03) at random
Compute V£ (6)(by back propagation)
ot+l = ot — @, V,£(6)

N d
Vot(60) =zz o logpy. (n)‘xinl-))

n=1i=1

What if N = |D]| is huge?

N d
Vogf(8) = N ZNZ: log po, ()‘x )
n=1 i=1

d

b [N Ty t08ps (xmx;?)]
=1
» Monte Carlo: x("W~D; Vg£(0) = NYL, Vg log po, xi(n) xg?
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Empirical Risk and Overfitting

Empirical risk minimization can easily overfit the data

e Extreme example: The data is the model (remember all

training data)

Generalization: the data is a sample, usually there is vast number
of samples that you have never seen
Your model should generalize well to these “never-seen” samples
Thus, we typically restrict the hypothesis space of distributions
that we search over
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How to avoid Overfitting?

Hard constraints, e.g., by selecting a less expressive model family
e Smaller neural networks with less parameters
« Weight sharing
Soft preference for “simpler” models: Occam Razor
Augment the objective function with regularization
objective(x,M) = loss(x,M) + R(M)
Evaluate generalization performance on a held-out validation set
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Recap

 For autoregressive models, it is easy to compute pg(x)
« When parameters are not shared, evaluate in parallel each

conditional log py, ( x ( . )‘x(n))

e Natural to train them via maximum likelihood
e Higher log-likelihood doesn’t necessarily mean better looking
samples
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