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Recap

• Representation: how do we model the joint distribution of many 
random variables?
• Need compact representation

• Bayesian network: A probabilistic graphical model representing 
variables and their conditional dependencies

• Autoregressive property(no conditional independence)

𝑝 𝒙 = 𝑝 𝑥! %
"#$

%

𝑝(𝑥"|𝒙&")

• For 𝑖 > 1,
𝑝'! 𝑥" 𝒙&" = 𝐵𝑒𝑟𝑛 𝑥"|𝑓" 𝒙&"

• where 𝜃" denotes the set of parameters used to specify the 
mean function 𝑓": 0,1 "(! → (0,1)
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Taxonomy of Generative model approaches

Generative 
model

Explicit density Approximate 
density

Implicit density

Tractable 
density

Variational 
Autoencoder

Energy based 
model

Diffusion model

Autoregressive 
model

Normalizing 
Flow

GAN



Deep Generative Models    |    mjgim@nims.re.kr |    NIMS & AJOU University

Learning a generative model

• We are given a training dataset of examples.

• Generation: sample 𝒙)*+ should look like training set(sampling)
• Density estimation
• Unsupervised representation learning: learn what these images 

have in common features
• 1st question: How to represent 𝑝'
• 2nd question: how to learn it

Model family
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Setting

• Let us assume that the domain is governed by some underlying 
distribution 𝑝%,-,

• We are given a dataset 𝐷 of 𝑁 samples from 𝑝%,-,
• The standard assumption is that the data instances are 

independent and identically distributed (IID) 
• We are also given a family of models ℳ, and our task is to learn 

some “good” distribution in this set: 
• For example, ℳ could be all Bayes nets with a given graph 

structure, for all possible choices of the CPD tables
• For example, a FVSBN for all possible choices of the logistic 

regression parameters , 𝜃 = concatenation of all logistic 
regression coefficients 
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Goal of learning

• The goal of learning is to return a model 𝑝' that precisely 
captures the distribution 𝑝%,-, from which our data was sampled 

• This is in general not achievable because of 
• limited data only provides a rough approximation of the true 

underlying distribution
• computational reasons 

• We want to select 𝑝' to construct the ”best” approximation to 
the underlying distribution 𝑝%,-,

• What is ”best”? 
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What is “best”?

• This depends on what we want to do
• Density estimation: we are interested in the full distribution 

(so later we can compute whatever conditional probabilities 
we want) 

• Specific prediction tasks: we are using the distribution to 
make a prediction 
• Is this email spam or not?
• Structured prediction: Predict next frame in a video, or 

caption given an image 
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Model family

Learning as density estimation

• We want to learn the full distribution so that later we can answer 
any probabilistic inference query 

• In this setting, we can view the learning problem as density 
estimation 

• We want to construct 𝑝' as ”close” as possible to 𝑝%,-, (recall we 
assume we are given a dataset 𝐷 of samples from 𝑝%,-,) 

• How do we evaluate “closeness ”?
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KL-divergence

• How should we measure distance between distributions?
• The Kullback-Leibler divergence (KL-divergence) between two 

distributions 𝑝 and 𝑞 is defined as

𝐷 𝑝 ∥ 𝑞 ≔ −=
𝒙

𝑝 𝒙 log
𝑞 𝒙
𝑝 𝒙

• 𝐷(𝑝 ∥ 𝑞) ≥ 0 for all 𝑝 and 𝑞, with equality if and only if 𝑝 = 𝑞.
• Prove it(exercise)

𝐸𝒙~0 − log
𝑞(𝒙)
𝑝(𝒙)

≥ − log 𝐸𝒙~0
𝑞 𝒙
𝑝 𝒙

= − log =
𝒙

𝑝 𝒙
𝑝 𝒙
𝑞 𝒙

= 0

• KL-divergence is asymmetric, i.e., 𝐷 𝑝 ∥ 𝑞 ≠ 𝐷 𝑞 ∥ 𝑝
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Learning as density estimation

• We want to learn the full distribution so that later we can answer 
any probabilistic inference query 

• In this setting, we can view the learning problem as density 
estimation 

• We want to construct 𝑝' as ”close” as possible to 𝑝%,-, (recall we 
assume we are given a dataset 𝐷 of samples from 𝑝%,-,) 

• How do we evaluate “closeness ”?
• KL-divergence is one possibility: 

𝐷 𝑝%,-, ∥ 𝑝' = 𝐸𝒙~0"#$# log
𝑝%,-,(𝒙)
𝑝'(𝒙)

• 𝐷 𝑝%,-, ∥ 𝑝' = 0 iff two distributions are equal
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Expected log-likelihood

• We can simplify this somewhat: 

𝐷 𝑝%,-, ∥ 𝑝' = 𝐸𝒙~0"#$# log
𝑝%,-,(𝒙)
𝑝'(𝒙)

= 𝐸𝒙~0"#$# log 𝑝%,-,(𝒙) − 𝐸𝒙~0"#$# log 𝑝'(𝒙)
• The first term does not depend on 𝑝'
• Then, minimizing KL divergence is equivalent to maximizing the 

expected log-likelihood 
argmin

0%
𝐷 𝑝%,-, ∥ 𝑝' = argmin

0%
−𝐸𝒙~0"#$# log 𝑝'(𝒙)

= argmax
0%

𝐸𝒙~0"#$# log 𝑝'(𝒙)

• Asks that 𝑝' assign high probability to instances sampled 
from 𝑝%,-,, to reflect the true distribution

• Because of log, samples 𝒙 where 𝑝'(𝒙) ≈ 0 weigh heavily in 
objective 
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Maximum likelihood

• Approximate the expected log-likelihood
𝐸𝒙~0"#$# log 𝑝'(𝒙)

• with the empirical log-likelihood:

𝐸1 log 𝑝'(𝒙) =
1
|𝐷|=

𝒙∈1

log 𝑝' 𝒙

• Maximum likelihood learning is then:

argmax
0%

1
|𝐷|

=
𝒙∈1

log 𝑝' 𝒙



Deep Generative Models    |    mjgim@nims.re.kr |    NIMS & AJOU University

Main idea in Monte Carlo Estimation

• Express the quantity of interest as the expected value of a 
random variable

𝐸𝒙~0 𝑔(𝒙) = L𝑔 𝒙 𝑝 𝒙 𝑑𝒙 ==
𝒙

𝑔 𝒙 𝑝(𝒙)

• Generate 𝑁 samples 𝒙(!), 𝒙($), ⋯ , 𝒙(5) from the distribution 𝑝
with respect to which the expectation was taken

O𝑔 𝒙 ! , 𝒙 $ , ⋯ , 𝒙 5 ≔
1
𝑁=
)#!

5

𝑔(𝒙()))

• where 𝒙(!), 𝒙($), ⋯ , 𝒙(5) are independent samples from 𝑝
• Note that O𝑔 is a random variable
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Properties of the Monte Carlo Estimate

• Unbiased
𝐸 O𝑔 = 𝐸𝒙~0 𝑔(𝒙)

• Convergence: By law of large numbers 
O𝑔 = !

5
∑)#!5 𝑔(𝒙())) → 𝐸𝒙~0 𝑔(𝒙) for 𝑁 → ∞

• Variance

𝑉 O𝑔 = 𝑉
1
𝑁
=
)#!

5

𝑔(𝒙())) =
𝑉𝒙~0 𝑔(𝒙)

𝑁
• Thus, variance of the estimator can be reduced by increasing the 

number of samples. 
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Single variable example: A biased coin

• Two outcomes: heads (𝐻) and tails (𝑇)
• Data set: Tosses of the biased coin, e.g., 𝐷 = {𝐻,𝐻, 𝑇, 𝐻, 𝑇}
• Assumption: the process is controlled by a probability 

distribution 𝑝%,-, 𝑥 where 𝑥 ∈ {𝐻, 𝑇}
• Class of models ℳ: all probability distributions over 𝑥 ∈ 𝐻, 𝑇
• Example learning task: How should we choose 𝑝' 𝑥 from ℳ if 3 

out of 5 tosses are heads in 𝐷? 
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MLE scoring for the coin example 

• We represent our model: 𝑝' 𝑥 = 𝐻 = 𝜃 and 𝑝' 𝑥 = 𝑇 = 1 − 𝜃
• Observed data: 𝐷 = {𝐻,𝐻, 𝑇, 𝐻, 𝑇}
• Likelihood of data

%
"

𝑝' 𝑥(") = 𝜃 ⋅ 𝜃 ⋅ 1 − 𝜃 ⋅ 𝜃 ⋅ (1 − 𝜃)

• Optimize for 𝜃 which makes 𝐷 most likely
• What is the solution in this case? 𝜃 = 0.6, optimization problem 

can be solved in closed-form 
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Extending the MLE principle to autoregressive models

• Given an autoregressive model with 𝑑 variables and factorization 

𝑝' 𝒙 = 𝑝'& 𝑥! %
"#$

%

𝑝'! 𝑥" 𝒙&"

• where 𝜃 = (𝜃!, ⋯ , 𝜃%) are the parameters of all the conditionals
• Training data 𝐷 = {𝒙 ! , ⋯ , 𝒙 5 }
• Maximum likelihood estimate of the parameters 𝜃?
• Decomposition of Likelihood function

𝐿 𝜃, 𝐷 =%
)#!

5

𝑝' 𝒙 ) =%
)#!

5

%
"#!

%

𝑝'! 𝑥"
) 𝒙&"

)

• Goal: argmax
'
𝐿 𝜃, 𝐷 = argmax

'
log 𝐿 𝜃, 𝐷
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MLE Learning: Gradient Descent

𝐿 𝜃, 𝐷 =%
)#!

5

𝑝' 𝒙 ) =%
)#!

5

%
"#!

%

𝑝'! 𝑥 )
" 𝒙&"

)

• Goal: argmax
'
𝐿 𝜃, 𝐷 = argmax

'
log 𝐿 𝜃, 𝐷

• Let ℓ(𝜃) ≔ 𝐿 𝜃, 𝐷
• Initialize 𝜃6 = 𝜃!6, ⋯ , 𝜃%6 at random
• Compute ∇'ℓ(𝜃)(by back propagation)
• 𝜃-7! = 𝜃- − 𝛼-∇'ℓ(𝜃)

• Non-convex optimization problem, but often works well in 
practice 
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MLE Learning: Stochastic Gradient Descent

ℓ 𝜃 = log 𝐿 𝜃, 𝐷 =%
)#!

5

%
"#!

%

log 𝑝'! 𝑥"
) 𝒙&"

)

• ℓ 𝜃 = log 𝐿 𝜃, 𝐷
• Initialize 𝜃6 = 𝜃!6, ⋯ , 𝜃%6 at random
• Compute ∇'ℓ(𝜃)(by back propagation)
• 𝜃-7! = 𝜃- − 𝛼-∇'ℓ(𝜃)

• What is the gradient with respect to 𝜃8? (no parameter sharing)

∇''ℓ 𝜃 = =
)#!

5

∇''=
"#!

%

log 𝑝'! 𝑥"
) 𝒙&"

)

= =
)#!

5

∇'' log 𝑝'' 𝑥8
) 𝒙&8

)
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MLE Learning: Stochastic Gradient Descent

• Initialize 𝜃6 = 𝜃!6, ⋯ , 𝜃%6 at random
• Compute ∇'ℓ(𝜃)(by back propagation)
• 𝜃-7! = 𝜃- − 𝛼-∇'ℓ(𝜃)

∇'ℓ 𝜃 = =
)#!

5

=
"#!

%

∇' log 𝑝'! 𝑥"
) 𝒙&"

)

• What if 𝑁 = 𝐷 is huge?

∇'ℓ 𝜃 = 𝑁=
)#!

5
1
𝑁
=
"#!

%

∇' log 𝑝'! 𝑥"
) 𝒙&"

)

= 𝐸9 ( ~1 𝑁=
"#!

%

∇' log 𝑝'! 𝑥"
) 𝒙&"

)

• Monte Carlo: 𝑥 ) ~𝐷; ∇'ℓ 𝜃 ≈ 𝑁∑"#!% ∇' log 𝑝'! 𝑥"
) 𝒙&"

)
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Empirical Risk and Overfitting

• Empirical risk minimization can easily overfit the data
• Extreme example: The data is the model (remember all 

training data)
• Generalization: the data is a sample, usually there is vast number 

of samples that you have never seen
• Your model should generalize well to these “never-seen” samples 
• Thus, we typically restrict the hypothesis space of distributions 

that we search over
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How to avoid Overfitting?

• Hard constraints, e.g., by selecting a less expressive model family
• Smaller neural networks with less parameters
• Weight sharing 

• Soft preference for “simpler” models: Occam Razor
• Augment the objective function with regularization

𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝒙,𝑀 = 𝑙𝑜𝑠𝑠 𝒙,𝑀 + 𝑅(𝑀)
• Evaluate generalization performance on a held-out validation set 
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Recap

• For autoregressive models, it is easy to compute 𝑝' 𝒙
• When parameters are not shared, evaluate in parallel each 

conditional log 𝑝'! 𝑥"
) 𝒙&"

)

• Natural to train them via maximum likelihood 
• Higher log-likelihood doesn’t necessarily mean better looking 

samples



Thanks


